Design and study of the efflux function of the EGFP fused MexAB-OprM membrane transporter in Pseudomonas aeruginosa using fluorescence spectroscopy.
نویسندگان
چکیده
Multidrug membrane transporters (efflux pumps) can selectively extrude a variety of structurally and functionally diverse substrates (e.g., chemotoxics, antibiotics), leading to multidrug resistance (MDR) and ineffective treatment of a wide variety of diseases. In this study, we have designed and constructed a fusion gene (egfp-mexB) of N-terminal mexB with C-terminal egfp, inserted it into a plasmid vector (pMMB67EH), and successfully expressed it in the ΔMexB (MexB deletion) strain of Pseudomonas aeruginosa to create a new strain that expresses MexA-(EGFP-MexB)-OprM. We characterized the fusion gene using gel electrophoresis and DNA sequencing, and determined its expression in live cells by measuring the fluorescence of EGFP in single live cells using fluorescence microscopy. Efflux function of the new strain was studied by measuring its accumulation kinetics of ethidium bromide (EtBr, a pump substrate) using fluorescence spectroscopy, which was compared with cells (WT, ΔMexM, ΔABM, and nalB1) with various expression levels of MexAB-OprM. The new strain shows 6-fold lower accumulation rates of EtBr (15 μM) than ΔABM, 4-fold lower than ΔMexB, but only 1.1-fold higher than WT. As the EtBr concentration increases to 40 μM, the new strain has nearly the same accumulation rate of EtBr as ΔMexB, but 1.4-fold higher than WT. We observed the nearly same level of inhibitory effect of CCCP (carbonyl cyanide-m-chlorophenylhydrazone) on the efflux of EtBr by the new strain and WT. Antibiotic susceptibility study shows that the minimum inhibitory concentrations (MICs) of aztreonam (AZT) and chloramphenicol (CP) for the new strain are 6-fold or 3-fold lower than WT, respectively, and 2-fold higher than those of ΔMexB. Taken together, the results suggest that the fusion protein partially retains the efflux function of MexAB-OprM. The modeled structure of the fusion protein shows that the position and orientation of the N-terminal fused EGFP domain may either partially block the translocation pore or restrict the movement of the individual pump domains, which may lead to partially restricted efflux activity.
منابع مشابه
Investigation of MexAB-OprM efflux pump gene expression in clinical isolates of pseudomonas aeruginosa isolated from Intensive Care Unit
Background and Aims: Pseudomonas aeruginosa is one of the most important pathogens of nosocomial infections, especially in the ICU (Intensive Care Unit), which has resistance to a wide range of antibiotics, especially Carbapenems. Among the most important resistance mechanisms of this bacteria against carbapenems are MexAB-OprM efflux pump. Therefore, the aim of this study was to evaluate the g...
متن کاملContribution of outer membrane efflux protein OprM to antibiotic resistance in Pseudomonas aeruginosa independent of MexAB.
A Pseudomonas aeruginosa strain carrying an insertion of an omega Hg interposon in the mexB gene (mexB::omega Hg; strain K879) produced markedly reduced but still detectable levels of OprM, the product of the third gene of the mexAB-oprM multidrug efflux operon. By using a lacZ transcriptional fusion vector, promoter activity likely responsible for OprM expression in the mexB::omega Hg mutant w...
متن کاملContributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes.
Of the six putative small multidrug resistance (SMR) family proteins of Pseudomonas aeruginosa, a protein encoded by the PA4990 gene (emrE(Pae)) shows the highest identity to the well-characterized EmrE efflux transporter of Escherichia coli. Reverse transcription-PCR confirmed the expression of emrE(Pae) in the wild-type strain of P. aeruginosa. Using isogenic emrE(Pae), mexAB-oprM, and/or mex...
متن کاملDetection of DNA Gyrase Mutation and Multidrug Efflux Pumps Hyperactivity in Ciprofloxacin Resistant Clinical Isolates of Pseudomonas aeruginosa
Target modification and reduced drug accumulation are the main resistance mechanisms against fluoroquinolone antibiotics in Pseudomonas aeruginosa. We performed a genotypic characterization of three major Mex multidrug efflux pumps (MexAB-OprM, MexXY-OprM and MexCD-OprJ) in ciprofloxacin resistant clinical isolates of P. aeruginosa, collected from Tehran, Iran this was followed by sequencin...
متن کاملTranscriptional Analysis of MexAB-OprM Efflux Pumps System of Pseudomonas aeruginosa and Its Role in Carbapenem Resistance in a Tertiary Referral Hospital in India
Carbapenem resistance presents severe threat to the treatment of multidrug resistant Pseudomonas aeruginosa infections. The study was undertaken to investigate the role of efflux pumps in conferring meropenem resistance and effect of single dose exposure of meropenem on transcription level of mexA gene in clinical isolates of P. aeruginosa from a tertiary referral hospital of India. Further, in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 139 12 شماره
صفحات -
تاریخ انتشار 2014